X - Y - Z coordinate system - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

X - Y - Z coordinate system - перевод на Английский

MOST COMMON COORDINATE SYSTEM (GEOMETRY)
Cartesian coordinates; Rectangular coordinate system; Cartesian plain; Cartesian coordinate; X-axis; Coordinate axes; Position coordinate; Cartesian plane; Y-axis; Xy plane; Cartesian coordinate plane; First Quadrant; First quadrants; X-y plane; Vertical axis; Horizontal axis; Right-handed coordinate system; Z-axis; Rectangular coordinates; Cartesian equation; Quadrant (analytic geometry); Rectangular Coordinates; Cartesian dimensions; Cartesian dimension; Applicate; Axis (mathematics); 3-dimensional coordinate system; 3 dimensional coordinate system; Cartesian space; Cartesian orthogonal coordinate system; Cartesian co-ordinates; Z axis; X axis; Rectangular coords; 3D coordinate system; 3-D coordinate system; 3d coordinate system; 3-d coordinate system; 3-d graph; 3D Cartesian Coordinate System; 3-D Cartesian Coordinate System; 3d Cartesian Coordinate System; Y axis; Xy-coordinate system; Cartesian planes; Cartesian co-ordinator; Euclidian coordinate system; X,y coordinates; Z-coordinate; Cartesian chart; 3d coordinates; Abscisse; Cartesian coordinate systems; Right-handed system; Left-handed coordinate system; Rectangular coordinate plane; Cartesian Coordinate System; Cartesian co-ordinate system; Rectangular coord; (x, y); History of the Cartesian coordinate system; Cartesian-coordinate system; Flat coordinate system; Cartesian axes; X-coordinate; Y-coordinate; Abscissas-axis; Ordinates-axis
  • 3D Cartesian coordinate handedness
  • (''a'', ''b'')}} and ''r'' is the radius.
  • (0, 0)}} in purple.
  • (1, −1, 1}}).
  • Fig. 7 – The left-handed orientation is shown on the left, and the right-handed on the right.
  • The four quadrants of a Cartesian coordinate system
  • (2, 3, 4)}}.
  • The [[right-hand rule]]
  • Fig. 8 – The right-handed Cartesian coordinate system indicating the coordinate planes.

X - Y - Z coordinate system      
نظام الإحداثيات X - Y - Z .
نظام الإحداثيات X      

X - Y - Z coordinate system

x-axis         
محور السينات ، محور سينى

Определение

Cartesian coordinates
<mathematics, graphics> (After Renee Descartes, French philosopher and mathematician) A pair of numbers, (x, y), defining the position of a point in a two-dimensional space by its perpendicular projection onto two axes which are at right angles to each other. x and y are also known as the abscissa and ordinate. The idea can be generalised to any number of independent axes. Compare polar coordinates. (1997-07-08)

Википедия

Cartesian coordinate system

In geometry, a Cartesian coordinate system (UK: , US: ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, called coordinate lines, coordinate axes or just axes (plural of axis) of the system. The point where they meet is called the origin and has (0, 0) as coordinates.

Similarly, the position of any point in three-dimensional space can be specified by three Cartesian coordinates, which are the signed distances from the point to three mutually perpendicular planes. More generally, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n. These coordinates are the signed distances from the point to n mutually perpendicular fixed hyperplanes.

Cartesian coordinates are named for René Descartes whose invention of them in the 17th century revolutionized mathematics by providing the first systematic link between geometry and algebra. Using the Cartesian coordinate system, geometric shapes (such as curves) can be described by equations involving the coordinates of points of the shape. For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x2 + y2 = 4.

Cartesian coordinates are the foundation of analytic geometry, and provide enlightening geometric interpretations for many other branches of mathematics, such as linear algebra, complex analysis, differential geometry, multivariate calculus, group theory and more. A familiar example is the concept of the graph of a function. Cartesian coordinates are also essential tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering and many more. They are the most common coordinate system used in computer graphics, computer-aided geometric design and other geometry-related data processing.